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1. Introduction

In 2020 in the United States, 197,453 new cases of Lung and Bronchus cancer were reported,
and 136,084 people died of this cancer (CDC, 2023). While Lung cancer can be cured if it
is found in its early stages, median survival is less than two years if it is not found until its
later stages (Dritsas and Trigka, 2022). Thus, early recognition of and treatment for lung
cancer is vitally important. Although there have been papers written on the use of machine
learning in conjunction with common (and easily diagnosable) symptoms in the prediction
of lung cancer (Dritsas and Trigka, 2022), the results of said papers have not been published
in an accessible and easily usable way.

In this paper, I aim to mend this gap in the research. I will create a neural network
classification model which, using some easily self-diagnosable symptoms, can classify indi-
viduals as having or not having lung cancer with a high degree of accuracy. While this
model will not be able to diagnose users with lung cancer, it can serve as a basis to prompt
users to seek actual medical help (hopefully at a sufficiently early stage of lung cancer). My
model will achieve a performance in line with the state of the art machine learning models
presented in previous papers. I will create a website for this model using Vercel (Ver, 2023),
Node.js (Tilkov and Vinoski, 2010), Material UI (mat, 2023), and DALL-E 2 (to create the
logo for my website) (Ramesh et al., 2022). Users will be able to interact with the model
using this site. I will also create a decision tree to classify users as having or not having
lung cancer. My hypothesis is that this tree, when visualized, will contain smoking as one
of the highest data splits, showing that smoking is a good predictor of lung cancer. I hope
that this will serve to discourage some users from smoking, or at least encourage them to
question their smoking habits.

2. Preliminaries

In analyzing the data and attempting to create an effective classifier, I used many different
technologies and methods. Specifically, I employed standardization and SMOTE in my data
preprocessing, used a neural network and a decision tree for categorization, and calculated
precision, recall, f1, and accuracy to quantify the success of the categorization models. To
read in and modify the data, I used pandas (McKinney et al., 2011) and numpy (Oliphant
et al., 2006). I used imbalanced-learn (Lemâıtre et al., 2017) to perform SMOTE on the
dataset. I used scikit-learn (Kramer and Kramer, 2016) to train my models. In this section,
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I will describe each of the methods I used in order to provide a basis of understanding for
the rest of the paper.

Standardization is a method employed to give each feature in the data a mean of 0 and
a standard deviation of 1. The formula for standardization is

X ′ =
X − µ

σ

where µ represents the mean of X and σ represents the standard deviation.

The relu function is often used as the activation function for a neural network (terms
which will be defined in the following paragraphs). The relu function is defined as

f(x) = max(0, x)

In practice, this means that, when fed through the relu function, any negative value will
become zero and any positive value will go unchanged. The derivative of the relu function
when x < 0 is 0, and the derivative when x ≥ 0 is 1.

A neural network is, at its core, a directed, acyclic graph (DAG) with some additional
structure. A graph is a DAG if: it is simple (has a maximum of one edge between each
vertex/node), it only contains directed edges, and there are no directed cycles (i.e. there is
no path from any vertex back to itself). In addition to these requirements, a neural network
can be partitioned into layers L1, L2, . . . , Ln, such that any vertex in layer Li can only have
vertices in layer Li−1 as its parents. It is often the case that a vertex in layer Li has all the
vertices in layer Li−1 as its parents.

Each edge from any vertex in Li−1 to any vertex in Li represents a learnable weight/parameter,
forming the weight matrix [θ]Li−1→Li . To compute any layer’s value, you simply apply the
activation function (in this case relu) to the layer’s weight matrix multiplied by the previous
layer’s values:

XLi = relu(XLi−1 [θ]
Li−1→Li)

It is important to note that each layer will contain an additional node which simply has
a value of 1. This node will serve as an intercept term which can be modified for the
following layer’s values. The value of the last (rightmost) node(s) in the network serve as
the network’s output.

To update the neural network, you simply perform gradient descent on each parameter
in the neural network some number of times (epochs). The formula for gradient descent is

θ(t+1) = θ(t) − α∇L(θ(t))

where α is the learning rate. To compute the gradient of your parameters, you use back-
propagation (as computing the gradients by perturbing each parameter requires k forward
passes through the network, where k is the number of parameters). Recall that a neural
network can, at its core, be represented by a DAG. To perform backpropagation, you first
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initialize ∂L
∂L = 1, where L is the last layer in the network. You then move in reverse topo-

logical order via breadth first search, applying the chain rule to each parameter in order
to ascertain said parameter’s gradient. This gives us the gradient of each parameter in the
network in only one passthrough of the network.

In stochastic gradient descent, you modify the update rule. Instead of updating θ based
on the gradient of the entire dataset, you split the dataset into smaller batches and update
the gradient based on the average gradient in each of these batches. So, the update rule
now looks like

θ(t+1) = θ(t) − α∇Lbatchi
(θ(t))

You apply this rule for each batch in the dataset, and repeat this process for some specified
number of epochs.

Lastly, Nesterov’s Momentum modifies the update rule as follows:

mt+1 = µmt + α∇Lbatchi
(θt − µmt) (†)

θ(t+1) = θ(t) −mt+1 (‡)

where µ represents the momentum constant, a parameter which can be tweaked by the user
(Dozat, 2016). In (†), you update the momentum m by adding the previous momentum —
scaled by the momentum constant µ — to the α scaled gradient of the loss. This loss is
calculated based on an initial guess for θ(t+1), which you approximate by subtracting the
current scaled momentum µmt from θ(t). In ‡, you subtract the updated momentum from
θ(t) to obtain θ(t+1).

Incorporating Nesterov’s Momentum into the update rule allows the model to converge
faster, as taking previous gradients into account allows the model to update θ by larger val-
ues in steeper regions of the loss function. It also reduces the speed at which θ is updated
in shallower regions, reducing the risk of overshooting the target and providing stabler gra-
dients on the whole. In addition, because Nesterov’s Momentum effectively ’looks ahead’
to the next position of θ when updating it, the positive effects of momentum (faster and
more stable updates) are further solidified.

A decision tree is created through a process of splitting the data in an attempt to
minimize a loss function. To create a decision tree, you begin with a node which contains
all of your data, [D] = ([X], Y ). You then search through all possible ways of splitting the
data on values in [X]. This best split is then used to create two children, [D]s1 and [D]s2.
This process is continued recursively until you reach some maximum depth or until the
loss function has been completely minimized. A decision tree with some maximum depth
is called a limited depth decision tree, and a decision tree which can grow until the loss
function has been minimized is an unlimited depth decision tree. Entropy is often used as
the loss function to determine the best split. Entropy is calculated as follows:

H([D]) = −
∑
c

pc log2(pc)
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where pc denotes the portion of data points in [D] where Y has the class label c. The way
to calculate the entropy of a data split is through the weighted entropy:

H([D]s1, [D]s2) =
len([D]s1)H([D]s1) + len([D]s2)H([D]s2)

len([D]s1) + len([D]s2)

Each split, you aim to minimize this weighted entropy.

In measuring the performance of a machine learning model, the following metrics are
often used: precision, recall, f1 score, and accuracy. Each of these scores takes into account
either the number of true positives, true negatives, false positives, or false negatives. A true
positive (TP) or a true negative (TN) represent a correct positive or negative prediction
(i.e. correctly predicting that a patient does or does not have cancer). A false positive (FP)
is when the model predicts a positive outcome but the outcome is actually negative, and
a false negative (FN) is when the model predicts a negative outcume but the outcome is
actually positive.

The formula for precision is

TP

TP + FP

Precision quantifies how accurately the model predicts positive outcomes, with a low pre-
cision score indicating that the model has predicted many false positives. However, this
metric does not capture the amount of positive outcomes which the model misses (i.e. false
negatives).

The formula for recall is

TP

TP + FN

Recall quantifies how accurately the model can identify all positive outcomes, with a low
recall score indicating that the model has incorrectly identified many positive outcomes as
negative. This metric does not capture the amount of negative outcomes which the model
incorrectly identifies as positive, meaning that a model which drastically overestimates
positive outcomes would still score well on recall.

The formula for the f1 score is

2 ∗ precision ∗ recall
precision + recall

The f1 score is simply a weighted average of precision and recall, providing one metric which
describes how the model is doing in both of these metrics. This means that, even if the
model is performing very well in one metric to the detriment of the other (i.e. overestimating
positives to perform better in recall), the f1 score will still suffer as a result.

The formula for accuracy is

TP + TN

Total Observations
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Accuracy simply measures the proportion of correct predictions to total predictions. While
accuracy is very intuitive, it can be misleading for imbalanced datasets. If a dataset has a
large proportion of one outcome over another, a model which simply predicts that outcome
everytime would still achieve a high accuracy. This is where precision, recall, and f1 scores
provide a more nuanced picture of the model.

Synthetic Minority Over-sampling Technique (SMOTE) is an algorithm which can be
used to address imbalances in outcomes in a dataset (Chawla et al., 2002). In performing
SMOTE, you first randomly pick a point from the underrepresented class. You then find the
k-nearest neighbors of that point (where k is a parameter set by the user). In the imbalanced
learn implementation of SMOTE which I used in this paper (Lemâıtre et al., 2017), the k-
nearest neighbors are found using the value difference metric (Stanfill and Waltz, 1986).
The value difference metric computes the distance between two feature vectors, X and Y ,
using the following formula:

δ(x, y) =
C∑
c=1

|p(c|xf )− p(c|yf )|k

∆(X,Y ) =
F∑

f=1

δ(Xf , Yf )
r

where x and y are two samples, f a given feature, C is the number of classes, F is the
number of features, and r and k are exponents usually set to either 1 or 2. After you find
the k-nearest neighbors to the point using this formula, you select one neighbor at random.
You then draw a ”line” between the original point and the selected point (or draw a line
between the values of each feature in the two points), and select a random point on this line.
This random point is then added to the dataset as a new value. This process of random
selection, k-nearest neighbor searching, and point generation is repeated until the desired
balance between classes has been achieved (which in many cases is simply a 50/50 split).

Finally, a causal DAG is a directed acyclic graph wherein each directed edge between
A and B implies that A might be a cause of B. A lack of such an edge implies that B is
independent of A given its direct causes. So, given any topological ordering of the causal
Dag V1, . . . , Vk, the following property holds:

Vi ⊥⊥ past∗g(Vi)|pastg(Vi)

where past∗g(Vi) denotes all variables appearing before Vi in the topological ordering, except
for the parents of Vi. This implies that Vi is independent of all of its predecessors in the
topological ordering given its parents, except for its parents.

A topological ordering is an ordering of a graph such that, for every direct edge from
Vi to Vj , Vi appears before Vj . In other words, no node which has a direct edge to another
node will appear after that node, and every node’s parent(s) will appear before that node
in a topological ordering.
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3. Data

The data which I used to train my models was obtained from the Kaggle data set posted by
Bhat (2021). This model contains 284 instances and 16 features (15 inputs for the model and
one target). All of the features are categorical and binary except for age, which is numerical.
The features are: Gender, Age, Smoking, Yellow Fingers, Anxiety, Peer Pressure, Chronic
Disease, Fatigue, Allergy, Wheezing, Alcohol, Coughing, Shortness Of Breath, Swallowing
Difficulty, Chest Pain, and Lung Cancer (the target). Unfortunately, the dataset does not
include additional classifiers for other sexes or genders not captured by the male/female
binary.

The dataset contains 39 people (12.6%) without lung cancer and 270 people (87.4%) with
lung cancer. I attempted to reduce this skew in the outcomes by using SMOTE (which I
will discuss in the next paragraph), but it should still be noted that there are very few
unaltered data points for people without lung cancer. The following summary statistics are
based on the dataset before SMOTE was performed. For the age feature, the mean is 62.7,
the mode is 64, the minimum is 21, and the maximum is 87. The dataset is clearly skewed
towards older people, an issue which would ideally be remedied in future research and/or
new datasets. Finally, 56.3% of the people in the dataset are smokers, 50.4% have chronic
disease, and 55.7% have allergies.

The data was read in and processed using pandas (McKinney et al., 2011). It should be
noted that some of the feature names in the data had trailing spaces (specifically fatigue
and allergy) which I manually removed. In processing the data, I converted each categorical
(and binary) variable to map to either a 0 or a 1 (some of the variables previously mapped
to either 1 or 2, or were associated with strings such as ”MALE” instead of numbers). I then
applied SMOTE — with the number of neighbors (k) set to 5 — to the dataset in order to
equally balance the occurrences of lung cancer versus non lung cancer. The data was split
into an X matrix, which contained every feature except lung cancer, and a Y matrix, which
contained only lung cancer. The X and Y matrices were then split into training, validation,
and testing sets (with a split of 56.25% for training, 18.75% for validation, and 25% for
testing). These matrices were then standardized (using only the standard deviations and
means from the testing set so as to avoid overfitting), and were finally converted into numpy
matrices (Oliphant et al., 2006).

I also created a separate dataset which contained only the features Gender, Age, Smok-
ing, and Lung Cancer. All of the processes described above were also applied to this reduced
dataset.

4. Training And Validation Of Models

To create both the neural network and the decision trees, I used the python package scikit-
learn (Kramer and Kramer, 2016). As my baseline for performance, I used the paper by
Dritsas and Trigka (2022), as this paper analyzed the same data set that I analyzed (Bhat,
2021). The authors of this paper achieved an accuracy, precision, recall and F-Measure of
97.1%.
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Figure 1: Accuracy of different model sizes when tested on the validation set. Created using
Matplotlib (Hunter, 2007).

In order to train my neural network, I created a program to test out different config-
urations using a validation set. I created a program which trained each of the following
neural network configurations 5 times, where each number represents one layer size within
the network: (8, 8, 4), (16, 8, 4, 2), (16, 8, 8, 2), and (32, 16, 8, 8). I then saved the one
model which performed the best on the validation set, which had the configuration (8, 8,
4). Each model was trained using 500 iterations (with data shuffling), the relu activation
function, an alpha of 0.0001, the stochastic gradient descent solver, a batch size of 32, and
nesterov’s momentum with the momentum constant set to 0.9. I kept the alpha, batch size,
and iterations constant as initial testing suggested that the modifying of these hyperper-
ameters did not make a consistent or significant difference in the model’s performance on
the validation set. Thus, I selected seemingly reasonable values for these constants. The
momentum constant was set to 0.9 because this is the constant suggested by scikit-learn.
Figure 1 shows the accuracy of the various models which were trained when tested on the
validation set.

I trained two separate decision trees. The trees made splits using entropy as the criterion.
One tree had an infinite depth and one had a depth of 5. The tree with a depth of 5 was
originally intended as an educational model which could be used to show that smoking is a
good predictor of lung cancer. This was not successful, the possible reasons for which will
be elaborated on in the Discussion and Conclusion Section.

5. Results

The best performing neural network had a configuration of (8, 8, 4). The network achieved
a precision of 94.4%, a recall of 98.6%, an f1 of 96.5%, and an accuracy of 96.3%. This
does not reach the baseline accuracy, precision, or F-Measure of 97.1%. However, my model
does outperform the baseline model in terms of recall. This is an ambiguous result, as
it is arguable that predicting the highest proportion of truly positive cases (i.e. recall)
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Figure 2: Table with how often a perturbation of any given feature changed the model’s
output.

is extremely important in lung cancer prediction. Failing to predict a positive case of
lung cancer could be harmful or even deadly. On the other hand, the baseline is slightly
better than my model in all other metrics. So, it is ambiguous whether my model performs
strictly better or worse than the baseline. My model is available for public use at https:
//lung-cancer-risk-assessment-tool.vercel.app/.

To test which variables have the most impact on the model, I created a program which
perturbs every possible combination of 3 features in the dataset, and outputs which per-
turbation changes the results. The initial sample which was perturbed had 0 for every
non-continuous variable — “no” for all binary variables, and “Male” for gender. Age was
set to the mean age of 62.7. A table which shows the number of times each feature appeared
in a perturbation which changed the output of the model can be found in Figure 2. In
short, it appears that chronic disease is, by a wide margin, the variable which is most likely
to change the output of the model when perturbed, followed by anxiety, allergy and fatigue.

The unlimited depth decision tree achieved a precision of 93.0%, a recall of 95.7%, an
f1 of 94.3%, and an accuracy of 94.1%. The decision tree with a depth of 5 achieved a
precision of 95.5%, a recall of 92.8%, an f1 of 94.1%, and an accuracy of 94.1%. Both of
these trees performed strictly worse than the baseline. However, the original intention with
the decision trees was to provide an intuitive demonstration that smoking is a large risk
factor for cancer. As such, I hypothesized that smoking would appear high up on these
decision trees. However, smoking did not appear until very low in either tree. Instead,
features such as age, gender, fatigue, and swallowing difficulty appeared higher up in the
unlimited depth decision tree. Upon further thought, this makes intuitive sense. The causal
relationship between the features in the dataset and lung cancer are far from simple, and
smoking is not the only possible cause for lung cancer within the set of features in the
data (Figure 3). While smoking might be a direct cause of cancer, it is also possible that
its downstream effects, such as allergies, predict cancer (although the relationship between
allergies and lung cancer is controversial (El-Zein et al., 2014)). In addition, high levels
of smoking might cause some symptoms such as fatigue and difficulty swallowing (Corwin
et al., 2002; ŞANLI et al., 2016), again making these potentially better predictors than
smoking itself. So, it is not surprising that smoking does not appear as a high-level split in
either decision trees.

6. Ablation Study

For my ablation study, I decided to remove every variable that could be caused by smoking
(Figure 3). This left me with just Gender, Age, and Smoking. The reason I did this was
that features such as fatigue and swallowing difficulty were appearing higher up on the
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Figure 3: A possible causal graph for the variables in the dataset. This is not a causal
DAG, as there are cycles. Created using Graphviz (Ellson et al., 2002).

Figure 4: First two layers of limited depth decision tree trained on the reduced feature
dataset. Created using Matplotlib (Hunter, 2007).

decision tree than smoking. Using just these features, I trained another neural network
(using the same methods as described above), as well as another decision tree with a depth
of 5. For the original dataset, the best neural network had a training accuracy of 97.7% , a
validation accuracy of 99.0%, and a testing accuracy of 96.3%. With the new dataset, the
best neural network had a training accuracy of 72.9%, a validation accuracy of 73.5%, and
a testing accuracy of 71.9%. The best limited depth decision tree had a training accuracy
of 86.1%, a validation accuracy of 79.4%, and a testing accuracy of 77.0%. As expected,
smoking moved upwards in the decision tree to the second layer (Figure 4).

7. Discussion and Conclusion

Overall, I am happy with how the neural network has turned out. Although it is not a
significant step above the baseline, it is also not clearly worse than the baseline. Fur-
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ther, my initial goal of publicizing a state of the art model has been achieved (at https:
//lung-cancer-risk-assessment-tool.vercel.app/). However, the neural network is
somewhat limited by both the size and the detail of the dataset which it was trained on.
The dataset is small (with only 284 instances), and also does not include how much any
given person smokes, but only whether that person smokes or not. The fact that so many of
the features in the dataset are binary reduces the amount of personalization and specificity
which can be incorporated into the model. In addition, the dataset is limited in age rage,
as it has only 3 patients with ages less than 40. A future paper could address these issues
by either creating or focusing on an existing dataset without some of these limitations.
Further, I failed in my goal of creating a decision tree which could serve to show that smok-
ing is a significant feature in assessing lung cancer. For the future, I realize that I should
think about a possible causal graph of the features in a dataset before thinking about which
feature might be significant in any model’s predictions.
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